

Entwicklung eines Vorderseitenmodells für die Laser-Flash-Analyse

Amir Shandy, Frank Hemberger, Matthias Zipf, Thomas Stark, Jochen Manara, Jürgen Hartmann

Motivation – LFA multilayer systems

$$R_{th} \sim \frac{1}{\lambda}$$

$$\lambda(T) = \alpha(T) \cdot c_p(T) \cdot \rho(T)$$

Motivation – Additive Manufacturing

LFA Setup

Adiabatic model

Temperature development adiabatic model

Convolution methods

- Numerical convolution in the Fourier domain is achieved by pointwise multiplication of the discrete function values of the pulse and the temperature evolution in the frequency domain
- Analytical convolution in the time domain involves solving the convolution integral, using mathematically continuous definitions for the pulse and temperature evolution

Analytical convolution

$$P_{\sqcap}(t) = \begin{cases} P_{\sqcap} & for \ 0 < t \le t_p \\ 0 & for \ t > t_p \end{cases}$$

$$Q = \int_{0}^{t_p} P(t) dt = P_{\square} \cdot t_p := 1 J$$

$$\to P_{\square} = \frac{1}{t_n} \frac{J}{s}$$

Temperature development adiabatic model

Analytical convolution

$$\Delta T_P = \int_0^\infty P(t') \cdot \Delta T(t - t') dt' = \int_0^{t_P} P(t') \cdot \Delta T(t - t') dt'$$

$$\Delta T_{f,P_{\sqcap}} = \Delta T_{\infty} \cdot \left[1 + \frac{2}{t_p} \cdot \sum_{n=1}^{\infty} \frac{l^2}{\alpha n^2 \pi^2} \cdot exp\left(-\frac{\alpha n^2 \pi^2 t}{d^2} \right) \cdot \left(exp\left(\frac{\alpha n^2 \pi^2 t_p}{d^2} \right) - 1 \right) \right]$$

Analytical convolution

Numerical convolution

- 1. DFT of temperature curve and pulse
- 2. Pointwise multiplication of both curves
- 3. Applying DFT to the product

Numerical convolution

Comparison

Pulse shape variation

Conclusion

- Both convolution methods show similar temperature over time curves
- DFT convolutions for other pulse shapes show plausible temperature profiles
- A more realistic consideration of the front-side temperature evolution is possible through convolution with finite pulses
 - Finite temperature rise near t = 0
- TO-DO:
 - Investigate temperature dependence of thermal diffusivity in the models
 - Use models which consider thermal losses
 - Collect measurement data to test the applicability of the models

Thank you for your attention!

Amir Shandy, M. Eng Technical University of Applied Sciences Würzburg-Schweinfurt Institute for Sustainable Energy Systems Münzstraße 12, 97070 Würzburg

+49 931 3511-8247 <u>amir.shandy@thws.de</u> www.thws.de

