

Measurement system for thermophysical properties of thin films in a broad temperature range

Hans-W. Marx

Linseis Messgeräte GmbH, Selb, Germany E-Mail: h.marx@linseis.de Tel: +49 9287 880-12 Tel: +49 151 613 057 44

Vincent Linseis, Heiko Reith, Kornelius Nielsch

IAP University of Hamburg, Germany / Institut für Metallische Werkstoffe (IMW), IFW Dresden, Germany

Friedemann Völklein

Institute for Microtechnologies, RheinMain University of Applied Sciences Wiesbaden, Germany

Peter Woias

IMTEK, University of Freiburg, Freiburg, Germany

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Motivation

- Physical properties of thin films differ from bulk material
 - Parasitic surface effects are much stronger due to smaller dimensions and high aspect ratios

e.g. Boundary scattering & Quantum confinement

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> all measurements are taken in the same direction (in-plane)
- All measurements should be done at only one sample within one run
 - To avoid errors due to:
 - different sample compositions
 - different sample geometries (e.g. size or thickness)
 - different heat profiles
 - different environmental conditions

Measured properties are comparable to each other

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> All measurements are taken in the same direction (in-plane)
- All measurements should be done at only one sample within one run
- Measured parameters:

// Figure of merit

// Hall Constant

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> All measurements are taken in the same direction (In-Plane)
- All measurements should be done at only one sample within one run
- Measured parameters:

// Seebeck Coefficient

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> All measurements are taken in the same direction (In-Plane)
- All measurements should be done at only one sample within one run
- Measured parameters:

$$\implies ZT = \frac{S^2 \sigma}{\lambda} T$$
$$\blacksquare A_H$$

// electrical conductivity

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> All measurements are taken in the same direction (in-plane)
- All measurements should be done at only one sample within one run
- Measured parameters:

// thermal conductivity+ specific heat + emissivity (depends on sample)

- Development of a high quality, easy to use characterization system for thin films
- Temperature dependent measurements with easy sample preparation and handling
- High measurement flexibility (material, thickness, deposition methods)
- Consistent results -> All measurements are taken in the same direction (in-Plane)
- All measurements should be done at only one sample within one run
- Measured parameters:

// Hall constant
 (calculation of charge carrier concentration and mobility)

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Concept

Sample material

Sample deposition

sputtering, evaporation, ALD, ink-jet printing, spin coating etc.

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - a. El. conductivity measurement
 - b. Hall constant measurement
 - c. Seebeck coefficient measurement
 - d. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Measurement Sensor

- Chips are completely pre-structured and ready to use.
- Based on Si-substrate.
- Lithographically defined structures (cleanroom process)
 - Pt electrodes for connecting the sample.
 - Membranes for thermal conductivity measurements.
 - Resistance thermometers and "on the chip" heater for Seebeck coefficient measurement.
 - Surface for deposition is Al₂O₃.
- Deposition mask for well-defined sample geometry (strip off foil mask or metal shadow mask).
- Sample deposition on ONE side in ONE process

CAD drawing of measurement chip.

Goal: Easy to use chips with a broad application range and a minimum effort for the sample preparation.

Sample preparation route (shadow mask)

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Sensor layout

Back side of the chip.

2. El. Conductivity &Hall measurementusing4-Point Van-der-Pauw(needle contacts)

3. Thermal conductivity (two suspended membranes with heating stripe aligned to the center) Seebeck measurement (thermometer with "hot contact" on membrane. Cold contact is "needle contact")

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Electrical conductivity measurement

Using the Van-der-Pauw Method

- Very well known measurement technique
- Needs homogeneous layer thickness t (must be measured otherwise)
- Contacts must be small compared to sample
- Contact must be at the edge

can be fulfilled using the deposition mask

• Possible resistivity range up to $10^8 \Omega$

$$\exp\left(-\frac{\pi t}{\rho} \cdot R_{26,47}\right) + \exp\left(-\frac{\pi t}{\rho} \cdot R_{24,67}\right) = 1$$

Van-der-Pauw formula

sensor layout for VdP measurement

Hall constant measurement

Using the Van-der-Pauw Method

- Very well known measurement technique
- Needs homogeneous layer thickness t (must be measured otherwise)
- Contacts must be small compared to sample
- Contact must be at the edge

- can be fulfilled using the deposition mask
- Possible resistivity range up to $10^8 \, \Omega$

$$\Delta R_{27,46} = R_{27,46(B=1)} - R_{27,46(B=0)}$$

Hall mobility, carrier concentration

$$A_H = \frac{t}{B} \Delta R_{27,46}$$

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor Layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Comparison
- 6. Summary

Seebeck coefficient measurement

- Heater and thermometer on membrane
 - ➡ Large gradients are possible
 - Fast measurement (short thermal relaxation time)
 - Temperature gradient can be adjusted with I_{heater}

ZT = -

Membrane temperature distribution with heating stripe located in the middle

$$\implies S = \frac{-V_{\rm Th}}{\Delta T}$$

- 1. Motivation & Project Goals
- 2. Concept
- 3. Sensor layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

- Determination of the thermal conductivity using a hot stripe method
 Hot stripe acts as heater and sensor at the same time
- Two membrane setup for heat loss correction due to radiation.

3@ measurement (transient measurement, additional specific heat measurement is possible)
 Hot wire

- Determination of the thermal conductivity using a hot stripe method
 Hot stripe acts as heater and sensor at the same time
- Two membrane setup for heat loss correction due to radiation.
- 3
 measurement (Transient measurement, additional specific heat possible)
- Differential measurement (zero curve correction)

Sample measurement

Empty sensor measurement

- Determination of the thermal conductivity using a hot stripe method
 Hot stripe acts as heater and sensor at the same time
- Two membrane setup for heat loss correction due to radiation.

3
 *m*easurement (transient measurement, additional specific heat measurement is possible)

- Heating with known heating power P and measure mean temperature increase ΔT_M

Thermal conductivity can be calculated using the geometry data of the membrane

To correct the influence of heat loss due radiation, a two membrane setup + shielding is used

3.5

Additional information about emissivity

- Q: "What's the "minimum" thickness to measure?"
- A: Major point is: $\lambda_S d_S \ge 2 \cdot 10^{-7} \text{ WK}^{-1}$ "

The thermal conductance of the sample should be in the same range or bigger than the thermal conductance of the membrane (empty chip), as we use a differential measurement.

Material (thin film)	Th. Cond. @ RT	Min. thickness	Max. thickness
Metal	~ 100 W/mK	5 nm	0,25µm
TE material	~ 3 W/mK	50 nm	1 μm
Organic material	~ 0.4 W/mK	400 nm	15 µm

Measurement range of the thermal conductivity setup for different material classes at room temperature. Journal of ELECTRONIC MATERIALS; https://doi.org/10.1007/s11664-017-5989-4 2017 The Minerals, Metals & Materials Society

- 1. Motivation & Project Goals
- 2. Concept
- 3. Chip layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Measurement setup (without Hall-option)

- Modular design
- Easy chip installation and connection (spring pins, no bonding)
- Optimized thermal and magnetic behavior (can be controlled fast and easily)
- Chamber is designed for vacuum applications (10⁻⁵ mbar)

Measurement Setup (with Hall option)

- Complete measurement device consists of
 - Measurement chamber
 - Rack, including electronics
 - Thyristor
 - Lock-in amplifier
 - Electronics
 - Vacuum pump
 - Moveable electromagnet including chiller
 - KREG (LN₂ Cooling)
 - Dewar
 - Valve & control box

Measurement Software

- Temperature and magnetic field regulation (swipes)
- Optimized electronics for the measurement tasks
 - Basic device
 - 3 ω unit
 - Magnet control unit
- Current values (sensors)
- Measured values (samples raw data)
- Automatic measurements
 - Heat profiles
 - Measurement tasks
- Regulation of measurement properties.

Temperature profile				Serple properties		
Heating rate i	(K/min) Temperati	ene (°C)	Profile wizard	Nanei	Test WUF 1	
1 10	30		Heating rate: 23.03 K/wm 0	Thickness (d):	0.300 µm	
2 10	40		Mei, Temperature: 20.00 °C 🔅	Sample Thermocauple	r (Thermocousie 3	
3 30	50		Max. Temperature: 200.00 °C 💿	Resistance measur	enert	
4 10	60		Stepvidth: 33.03 %	Nearing current (1)	0.000 mA	
6 10	20		Append to profie Replace profile	in Honography check		
6.10			Tools	In all coefficient mea	auronent	
0.00			Append row	Measure current (2)	0.00 mA	
7.20	90		Cear profile	Number of meanurem	ente: 1	
£ 20 200				Mennes magnel por	er: 0.00 A	
				Meximum magnetos	0.00 A	
				IT restant conflicter	1	
				i seepeor coemoen	t neadurement	
				Aurber of neasurem	erts: 1	
				Men. Healter current:	0.00 #A	
				Max, heater current:	0.00 %A	
				Current for temp. me	asurement R1: (0.000 mA	
				current to targe me	examinent #2: [0.003 EM	
				Themal conductor	ty (DC)	
				Temperature measure	enent current (31): 0. 500 mA	
				Heat current (32):	0.500 mA	
🗄 Qa 🔣 Thermal conductivity (Su)		Aquatheat curre	nt			
Prequencys	20.00 Hz	Prequencys	20.00 He			
Current (pricaded):	0.050 mA	Current (urloaded):	0.050 mA			
Preparcy stan Preparcy stan						
Prequency to	1.00 Hz	Prequency tr 0.	80 Hz			
Stepvidth 1 2	1.00 Hz	Requercy 2 1	20 Hz			
Prequency 2:	10.00 Hz					
Stepvidth 23	1.00 Mz					
Prequency 3:	20.0014:					

 Impact measures in the second measures in the secon

Manual measurement & current values

Automated measurements & profiler.

Evaluation Software

- Database for raw data management
- Evaluation of the data with integrated plugins
 - Thermal conductivity
 - Zero curve correction
 - Specific heat calculation
 - Emissivity (dual membrane measurement)
 - Seebeck coefficient
 - Single point evaluation
 - Slope method evaluation
 - Average evaluation per temperature point
 - Resistivity / el. conductivity
 - Hall coefficient
 - Hysteresis (separation of heating / cooling)
 - ZT calculation / Powerfactor calculation
- Plotting (time / temperature)
- Export data

Database for raw data management

- 1. Motivation & Project Goals
- 2. Concept
- 3. Chip layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Applications

Ti 100 nm sputtered:

Applications

84 nm Bi₈₇Sb₁₃; evaporated

15 µm PEDOT:PSS; drop casting

- 1. Motivation & Project Goals
- 2. Concept
- 3. Chip layout
 - 1. El. conductivity measurement
 - 2. Hall constant measurement
 - 3. Seebeck coefficient measurement
 - 4. Thermal conductivity measurement
- 4. Measurement setup
- 5. Applications
- 6. Summary

Short summary

Unique commercially available measurement instrument for thermo-physical properties of thin films:

- 170 up to 300°C
- Magnetic field up to ± 1 Tesla
- Vacuum up to 10⁻⁵ mbar
- Ready-to-use disposable sensor for the following parameters (in-plane):
 - ρ/σ electrical resistivity/conductivity
 - S Seebeck coefficient
 - λ thermal conductivity (3 ω method)
 - Cp specific heat capacity
 - ε emissivity
 - A_{H} Hall constant (n + μ charge carrier concentration and mobility)

Thank you for your attention!

Any questions?