

Auswirkung ausfrierender Gase auf die Wärmeleitfähigkeit von Dämmmaterialien

- Experimentelle Ergebnisse zum Einfluss abgeschiedner Füllgase -

M. Geisler, J. Wachtel, J. Hoffmann, H.-P. Ebert

Bayerisches Zentrum für Angewandte Energieforschung (ZAE Bayern), Würzburg

5. März 2010, Karlsruher Institut für Technologie Institut für Materialforschung I, Eggenstein-Leopoldshafen

Gliederung

- 1. Motivation
- 2. Theorie
- 3. Proben
- 4. Experimenteller Aufbau
- 5. Ergebnisse + Diskussion
- 6. Zusammenfassung

Motivation

Wie kann man eine evakuierte Kryodämmung herstellen?

1.(Mechaniches) Abpumpen oder

2. Ausfrieren der Füllgase (Desublimations-Evakuierung) → "selbst-evakuierendes System"

Welchen Einfluß haben die abgeschiedenen Füllgase auf die Wärmeleitfähigkeit?

Motivation

Anwendung:

Desublimations-Evakuierung der Füllgase in porösen Dämmstoffen stellt eine vielversprehende Technik für <u>lange Kryo-Transferleitungen</u> dar:

Wärmeeintrag vergleichbar mit kommerziell erhältlichen Kryo-Transferleitungen mit MLI (~1 W/m)

mutmaßliche Vorteile:

- geringere Installationsarbeit und -zeit
- höhere Flexibilität im nicht-evakuierten Zustand
- keine Ventile erforderlich
- sehr große Leitungslängen möglich
- geringerer Wartungsaufwand
- geringere Empfindlichkeit gegenüber Restgasen und Unreinheiten dämmung
- Kostensenkung

Theorie

Theorie der Desublimations-Evakuierung

Theorie der Desublimations-Evakuierung

λ_{solid} -Modell für Vollglaskugeln ZAE BAYERN Berechnungen für 10µm Kugeln 0.12**d=(r²-a'**^{2)0.5} x8.7 0.10 le<mark>itf</mark>ähigkeit λ_{solid} , W·m⁻¹ Festkörperwärmefestes CO₂ a' 0.08 h = r - rta 0.06 V 0.04 condensed festes CO₂ x1.3 λ_{solid} evakuiert 0.02 a' 0.00 0.6 0.0 0.2 0.4 0.8 1.0 Homogene Schicht Punktkontakt Ergebnisse: Evakuiertes System Homogene Schicht - Abscheidung Kontaktpunkt - Abscheidung 0.014 W·m⁻¹·K⁻¹ 0.019 W·m⁻¹·K⁻¹ 0.120 W·m⁻¹·K⁻¹

Untersuchte Dämmmaterialien

getrübte Kieselsäure

Polyimid-Fasern

Melaminharzschaum

Experimenteller Aufbau ZAE BAYERN Gas-Einlaß **Temperatur-Sensor** modifizierte Plattenapparatur p_{ext} Membranbalg

Experimenteller Aufbau

Flexibler, wiederverschließbarer und gasdichter Membranbalg

© Bayerisches Zentrum für Angewandte Energieforschung (ZAE Bayern)

Relativer Anstieg der effektiven Gesamtwärmeleitfähigkeit im Vergleich zum evakuierten System

[©] Bayerisches Zentrum für Angewandte Energieforschung (ZAE Bayern)

Zusammenfassung

Desublimations-Evakuierung :

- Entwicklung einer Messmethode zur thermischen Charakterisierung
- Messungen von λ_{total} zeigen, dass:
 - primär die kälteste Schicht beeinflusst wird
 - der Gesamt-Einfluß für normale Mengen CO₂ moderat ist
 - das Füllgas vorwiegend homogen abgeschieden wird

Ausblick:

- weitere λ_{solid} -Modifikationen
- Modellierung dynamischer Eigenschaften von adsorbiertem CO₂
- Adsorptionsmessungen
- Neutronen-Radiographie-Experimente für CO₂-Verteilung @ HZB
- Feld-Tests: Experimente mit LH₂ und CO₂ / Luft

Vielen Dank für Ihre Aufmerksamkeit !

Vortragender:	Matthias Geisler	
---------------	------------------	--

Kontakt: geisler@zae.uni-wuerzburg.de

Titel: Evakuierte Kryowärmedämmstoffe durch Desublimation des Füllgases: Experimentelle Ergebnisse zum Einfluss abgeschiedner Füllgase

Veröffentlichung der wesentlichen Ergebnisse:

M. Geisler, J. Wachtel, J. Hoffmann, H.-P. Ebert, *Condensationevacuated cryogenic thermal insulation systems: experimental results of effects of deposited filling gases*, AIP Conference Proceedings of the CEC 2009 in Tucson, Arizona, print in 2010

Diese Arbeit wurde unterstützt durch:

Bundesministerium für Bildung und Forschung