Erweiterungsmöglichkeiten der Transient Hot Bridge Messmetode (THB) durch Finite Elemente Analyse

Dr. Heinz Renner Vielitzer Straße 43 95100 Selb GERMANY

Tel.: 0049 9287 880 42

Email: h.renner@linseis.de

In Zusammenarbeit mit:

Prof. Matthias Stripf,

M.Sc. Jochen Gaiser

Hochschule Karlsruhe

Inst. f. Kälte-, Klima- und Umwelttechnik

Moltkestr. 30

76133 Karlsruhe

Messung der Wärmeleitfähigkeit: Abweichungen bei unterschiedlichen Messmethoden

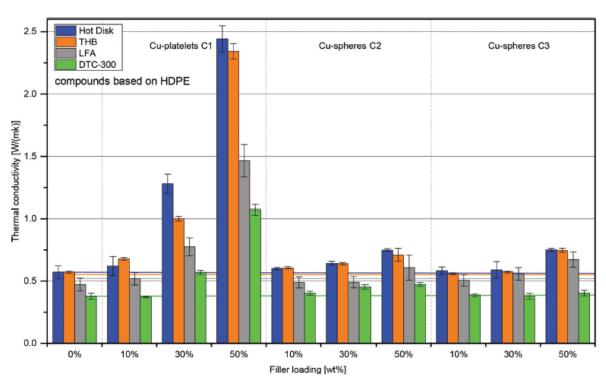


Figure 9. Effect of the filler geometry and concentration on the TC of HDPE-based compounds as determined by Hot Disk (isotropic measurement module), THB (BK7 calibration), LFA (radiation evaluation model), and DTC-300.

H. Weingrill, W. Hohenauer, K. Resch-Fauster, C. Zauner, Analyzing Thermal Conductivity of Polyethylene-Based Compounds Filled with Copper, Macromol. Mater. Eng. 2019, 1800644

Gründe für Abweichungen

- Probenvorbereitung
- Messparamter
- Auswertung der Messdaten
- Komplexer Wärmetransport in der Probe (z.B. Anisotropie, Inhomogenitäten etc.)

Einfluss der Messparameter

Viele Fehlerquellen wie z.B.:

- **LFA**: Pulsdauer- und Pulsenergie
- Heizdrahtmethoden: Heizleistung, Messdauer
- Stationäre Methoden: Temperaturgradient, Messdauer

Auswertung der Messaten

Basiert auf Modellen mit Korrekturen und Annahmen

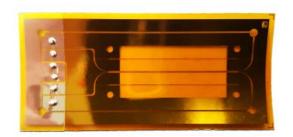
LFA:

- Korrekturen für Pulsdauer- und Pulsenergie
- Korrekturen für Wärmeverluste
- Korrekturen für Wärmestrahlung

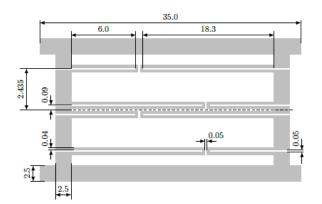
. . .

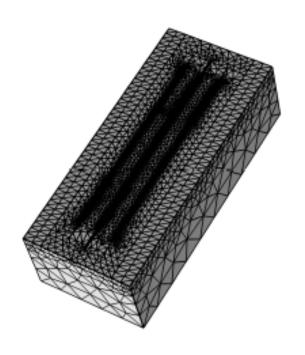
Heizdrahtmethoden:

 Annahmen und spezifische Randbedingungen bei der Lösung der Wärmeflussgleichungen


Elimierung dieser Fehlerquellen

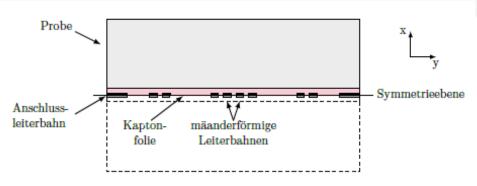
Auswertung der Rohdaten mit Finite Elemente Analyse

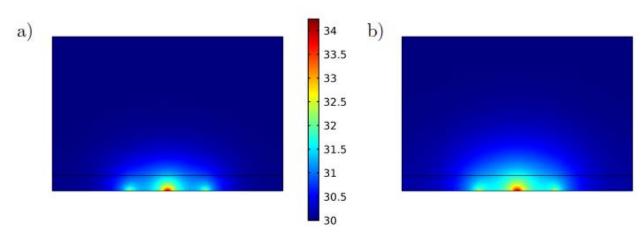

- Entwicklung eines Simulationsmodells für THB Methode
- Vergleich simulierter Daten und Messdaten
- Evaluierung mittels Referenzstandards
- Erweiterungen des Modells für anisotrope Materialien und komplexe Messaufgaben



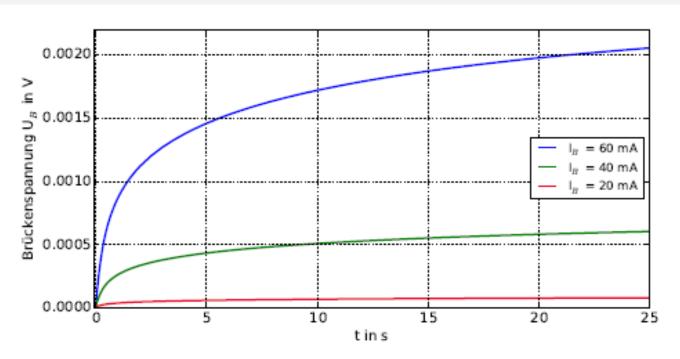
THB Simulations modell

THB-Sensor

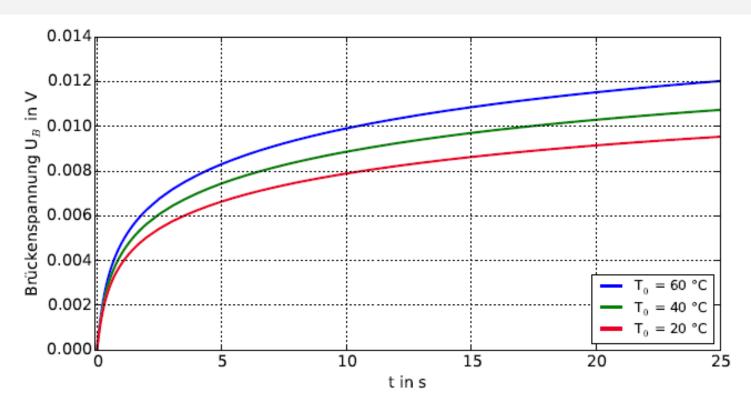


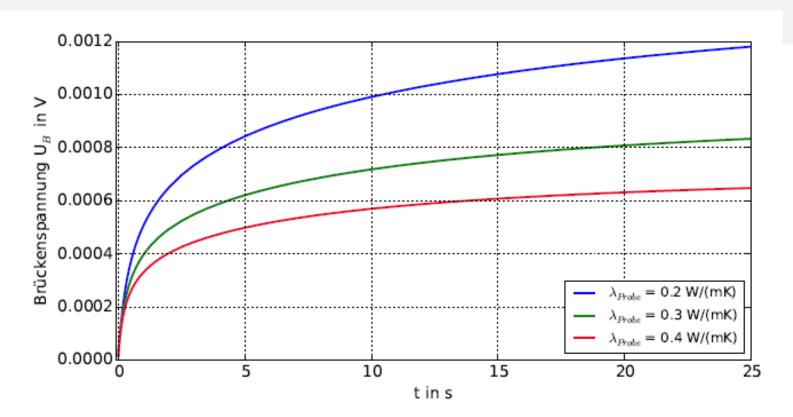

Vernetztes Simulationsmodell

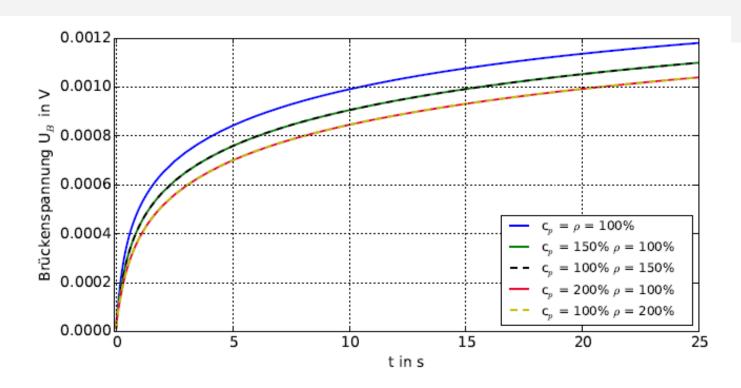
THB Simulations modell



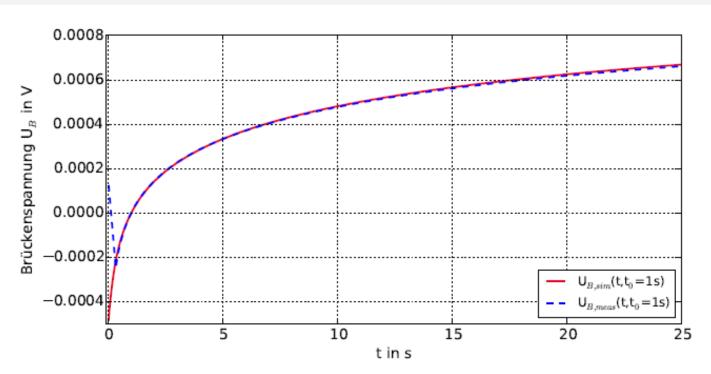
Qualitativer Schnitt des Sensormodells in der xy-Ebene an der Sensormitte


Temperaturverteilung der xy-Ebene an der Sensormitte nach 25 s, mit I_B = 50 mA und T_0 = 30°C in Abhängigkeit von der Probenwärmeleitfähigkeit: in a) λ_{Probe} = 0.2 $\frac{W}{mK}$ und in b) λ_{Probe} = 0.4 $\frac{W}{mK}$

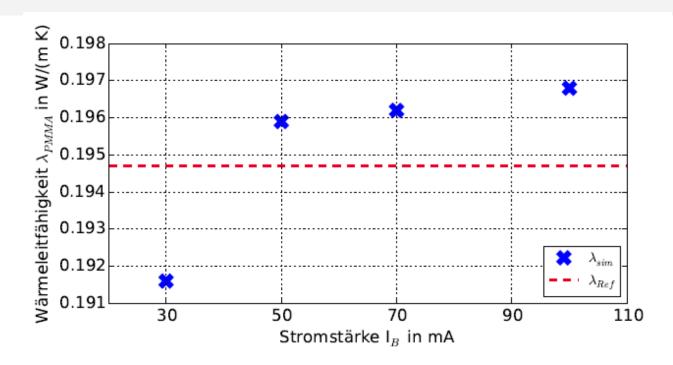

Brückenspannungsverlauf von PMMA abhängig vom Messstrom, mit $T_0=30~^{\circ}\mathrm{C}$


Brückenspannungsverlauf in Abhängigkeit von der Starttemperatur, mit $I_B=50~\mathrm{mA}$ und konstanten Probenstoffdaten von PMMA bei 20 °C

Brückenspannungsverlauf abhängig von der Wärmeleitfähigkeit λ_{Probe} , mit $T_0=30$ °C und $I_B=50$ mA

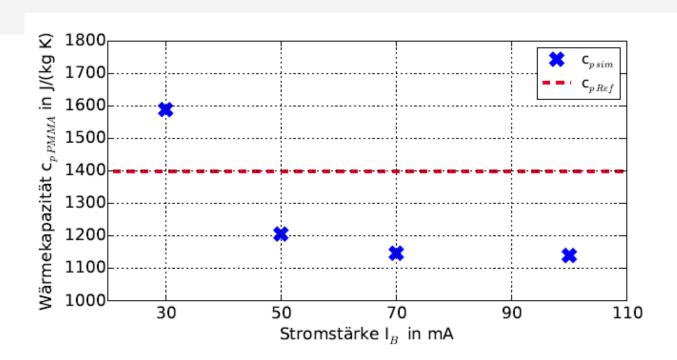


Brückenspannungsverlauf abhängig von der Dichte und Wärmekapazität, mit $T_0=30~^{\circ}\mathrm{C}$ und $I_B=50~\mathrm{mA}$


Messbeispiele - PMMA

Vergleich des simulierten und gemessenen Brückenspannungsverlauf unter Berücksichtigung der Nullpunktverschiebung mit $T_0=30\,^{\circ}\mathrm{C}$ und $I_B=50\,mA$

Messbeispiele - PMMA



Referenzwerte und berechnete Wärmeleitfähigkeiten von PMMA in Abhängigkeit der Messstromstärke

Abweichungen < 3% auch bei ungünstigen Messparamtern!

Messbeispiele - PMMA

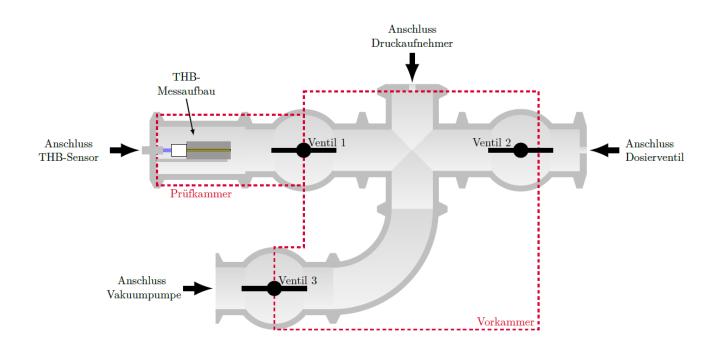
Referenzwerte und berechnete Wärmekapazitäten von PMMA

Ergebnisse der FEM- Auswertungen

- Hohe Genauigkeiten für die Berechnung der Wärmeleitfähigkeit
- Unabhängigkeit der Messergebnisse von Messparametern in weiten Bereichen

FEM Auswertungen

ERWEITERUNGSMÖGLICHKEITEN FÜR KOMPLEXERE ANWENDUNGEN


Beispiel 1: Adsorption - Beladungsabhängige Wärmeleitfähigkeit von Aktivkohle

Spannvorrichtung zum Anpressen von Aktivkohle an einen THB Sensor

Beispiel 1: Adsorption - Beladungsabhängige Wärmeleitfähigkeit von Aktivkohle

Messaufbau zur Untersuchung der Adsorption von Methanol an Aktivkohle

Beispiel 1: Adsorption - Beladungsabhängige Wärmeleitfähigkeit von Aktivkohle

Erweiterung des Simulationsmodells

• Beladungsänderungen durch Temperaturänderungen

$$rac{\partial X_{ist}}{\partial t} = k_s \, A_p \, (X_{soll} - X_{ist}), \, ext{mit} \qquad k_s \, A_p = rac{15 \, D_{ad}}{r_p^2}$$

Beladungsänderung

 Berücksichtigung der Energieänderung im Korn des Adsorbens und der Massenänderung durch Quell- und Senkterme


$$\begin{split} \dot{q}_{ad} &= h_{ad} \, \rho_{Ads}^{tr} \, \frac{\partial X_{ist}}{\partial t} \\ h_{ad} &= A + h_{evap} \end{split} \qquad \qquad \frac{\partial m}{\partial t} = \frac{\rho_{Ads}^{tr}}{M_{Adb}} \, \frac{\partial X_{ist}}{\partial t}$$

Änderung Adsorptionspotenzial Masseänderung

Masterarbeit Jochen Gaiser, "Transient Hot Bridge Verfahren -Tool-Entwicklung zur optimierten Auswertung der Wärmeleitfähigkeit und Wärmekapazität poröser Materialien", Hochschule Karlsruhe, 2016

Beispiel 1: Adsorption – Beladungsabhängige Wärmeleitfähigkeit

Beladungsabhängige Wärmeleitfähigkeit der Aktivkohle JHS400F in Abhängigkeit von der Beladung bei $T_0 = 30\,^{\circ}C$

Beispiel 2: Anisotropie

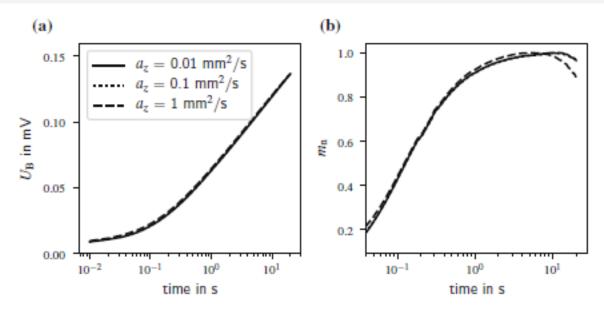


Fig. 3 Simulated bridge voltage (a) and the derived normalized slope (b) plotted against the time for various a_z , with $a_x = a_y = 0.1 \, \text{mm}^2 \cdot \text{s}^{-1}$

J. Gaiser, M. Stipf, F. Henning, Int. Journal of Thermophysics 2019, 40:12

Beispiel 2: Anisotropie

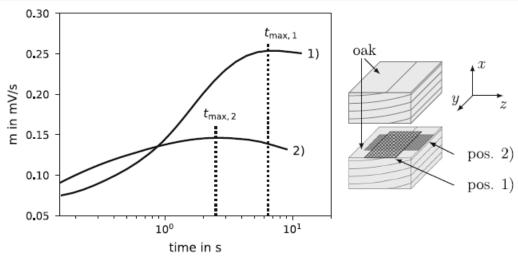


Fig. 10 Logarithmic slope of the measured bridge voltage and the corresponding time $t_{\max,i}$ of oak for two different sensor positions

Table 3 Comparison of the direction-dependent thermal conductivity of oak using different measuring methods

	$^{\lambda_{\chi}}_{(W\cdot m^{-1}\cdot K^{-1})}$	$^{\lambda y}_{(W\cdot m^{-1}\cdot K^{-1})}$	$^{\lambda_{z}}_{(W\cdot m^{-1}\cdot K^{-1})}$
THB	0.26 ± 0.02	0.38 ± 0.04	0.15 ± 0.01
HFM	0.27 ± 0.01	0.38 ± 0.02	0.16 ± 0.01
Lagüela et al. [15]	0.22 ± 0.01	0.58 ± 0.03	0.21 ± 0.01

J. Gaiser, M. Stipf, F. Henning, Int. Journal of Thermophysics 2019, 40:12

Zusammenfassung

THB- Messmethode mit FEM Auswertungen:

- Eliminierung methodenspezifischer
 Auswerteungenauigkeiten (modellfreie Auswertung)
- Minimierung von Anwendungsfehlern
- Erweiterungsmöglichkeiten für komplexe Messaufgaben

Vielen Dank für Ihre Aufmerksamkeit!

Dr. Heinz Renner

<u>h.renner@linseis.de</u>

Tel. +49 9287 880 42

