

KEP Technologies

INSPIRING IMAGINATION FOR MATERIAL SCIENCE

Calvet type 3D sensor and its relevance to Cp measurements

Stéphan MOREAU– SETARAM Instrumentation

AK-Thermophysik meeting April 26-28th 2016, Wien , Austria

- Calorimetric signal
- Calvet 3D sensors
- Temperature scanning methods
- Isothermal methods

- Thermodynamic data
 - Heat capacity

C_P is measured thanks to the measurement of the magnitude of the DSC signal

DSC signal – simplified equation

$$D_{(\mu V)} = S_{(\mu V.W^{-1})} \times m_{(g)} \times Cp_{(J.g^{-1}.K^{-1})} \times V_{(K.s^{-1})}$$
Magnitude of
the signal Shift Detector
Sensitivity Sample Mass Heating
Rate

To improve the C_P determination it is possible to

Increase the scanning rate

M

Thermal gradients risks

- Increase the sample mass
- Increase the detector sensitivity

Conventional 2D sensors

- Flat shaped thermocouples
 - Heat flow is detected through the bottom of the crucible
 - A bad sample –crucible contact impacts the final result -> Bias
 - Limited to small scale samples
- Efficiency losses at high temperature
 - Pt / PtRh10%: 2 times less sensitive at 1000°C

Conventional 2D sensors

- Flat shaped thermocouples
 - Calibration from reference material melting
 - Limited number of substances, i.e. of calibration temperatures
 - Large uncertainty between 2 calibration temperatures
 - Calibration from C_P reference material
 - Method with 3rd test is mandatory
 - Limited number of reference materials

Recommended materials for the calibration of heat capacity measurements vs. temperature range

Calvet sensors for low and very low temperatures

- The sensor surrounds the sample
- Heatflow measurement is
 - Quantitative and less depending on the calibration
 - Less depending on the crucible, type and sample shape
- The sensitivity coefficient is increased (multiple thermocouples)
- Most cases: available sample volume higher

- Calvet sensors for low and very low temperatures
 - Sensitivity coefficient determined by the Joule effect method
 - At any temperature over the temperature range of the calorimeter

- Calvet sensors for low and very low temperatures
 - Larger number of calibration points/temperatures
 - Regression more reliable: less uncertainty on S between 2 points
- 2 trials method is accurate enough with this type of sensors

Calvet sensors for low and very low temperatures

Calorimeter/DSC	μSC	BT2.15	MS80	C80	SENSYS Evo
Temperature range	-40 / 200°C	-196 / 200°C	30 / 200°C	30°C / 300°C	-120°C / 830°C
Thermocouples number / pile	N/A	450	>1000	190	120
Standard sample volume	0.85mL	12.5mL	100mL	12.5mL	0.25mL
Max sensitivity value	180µV/mW	40µV/mW	50µV/mW	30µV/mW	7μV/mW

Calvet sensors for low and very low temperatures

- Instrument: Sensys Evo DSC
 - Sample: sapphire
 - Mass: 616,4 mg
 - Rate: 3°C/min
- The deviation between the measured and literature values is less than 1%.

- Instrument: μSC
 - Sample: deionized water
 - Mass: 195.89mg
 - Rate: 0.1K/min
- The deviation between the measured and literature values is less than 0.5%.

- Instrument : C80
- Low density insulation materials
 - Aerogel: Spaceloft[®] (50kg.m⁻³, extremely low conductivity 14mW/m.K at 40°C)
 - Deprom: PS-based (extremely low density 40kg.m-3, low conductivity 27mW/m.K)
 - Expanded PVC relatively dense
- Samples heated from 30°C to 45°C @ 0.15 °C.min⁻¹

Spaceloft® is a flexible, nanoporous aerogel blanket insulation in residential and commercial building applications.

- Quasi-Calvet sensors for high temperatures
- C_P rod for Labsys Evo
 - 18 type S thermocouples (1600°C)
 - Sample volumes
 - 0.380mL (Pt crucible)
 - 0.235mL (With alumina liner)
 - Max sensitivity 0.5µV/mW
 - 2.5 times more than an equivalent type S DSC rod

- High temperature quasi-Calvet sensors
- HF-DSC sensors for HT calorimeters
 - T ranges
 - 20 to 1400°C (Pt/PtRh10%)
 - 20 to 1600°C (PtRh6%/PtRh30%)
 - Heating rate range
 - 0.01 to 20°C/min
 - Volume : 0.450 mL
 - Dimensions :
 - Diameter : 6 mm
 - Height : 16 mm

High temperature quasi-Calvet sensors

$$D_{(\mu V)} = S_{(\mu V.W^{-1})} \times m_{(g)} \times Cp_{(J.g^{-1}.K^{-1})} \times V_{(K.s^{-1})}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$
Magnitude of Improved High Low
the signal Shift

Characterization of NaF and NaLaF₄

- Materials potentially to be used for cooling systems of nuclear reactors of Generation IV (Molten Salt Reactor)
- Step mode, platinum crucible and boron nitride liner
- Tests from 473 K to 1213 K with steps of 15 K @ 2 K/min

FIGURE 1. Example of a C_p -by-step run. The step indicated has a size of 15 K, a rate of 2 K \cdot min⁻¹ and a duration of 7200 s.

FIGURE 3. Heat capacity measurements on NaLaF₄. \triangle : obtained by adiabatic calorimetry; \blacklozenge : obtained by heat flow calorimetry.

KJ.P.M. van der Meer et al. / J. Chem. Thermodynamics 38 (2006) 1260-1268

Drop calorimetry

- Principle
 - The sample is dropped from room temperature in the calorimeter chamber maintained at a given isothermal temperature
 - Two drops at similar temperatures allow determining the average CP between these temperatures
- S depends on temperature and filling level of the sensor
 - A reference material drop is necessary to frequently reassess the sensitivity coefficient

Alexys: high-sensitivity Calvet calorimeter optimized for drop calorimetry isothermal operations at temperatures up to 1000 °C, designed based on Prof. Alexandra Navrotsky's (UC Davis, Thermochemistry lab) experience.

- MultiHTC: High temperature drop calorimeter
 - **Temperature ranges**
 - 20 to 1300°C (Pt/PtRh10%)
 - 20 to 1500°C (PtRh6%/PtRh30%)

 In both detectors, the arrangement of thermocouples welding (thermopile) on the surface of the experimental chamber at varying heights provides good integration of the heat exchanges.

Al2O3 plug	_
SiO ₂ glass dropping tube for ——— sample introduction	
Platinum tube for bubbling gas —— Introduction	
Platinum crudible where solvent Is Introduced	- H + H
SiO2 glass crucible	_
SiO2 glass liner	
Inconel protection tube	

- Calibration coefficients at the tested temperature can be determined by drops of platinum and/or standard synthetic sapphire.
- Other option: before and after each tested sample drop, a standard material drop and calculation of an average sensitivity coefficient.

Overlaid thermograms obtained from sapphire drops with an Alexys calorimeter at 800°C (0.214µV/mW) and 1000°C (0.152µV/mW)

- Calibration coefficients at the tested temperature can be determined by drops of platinum and/or standard synthetic sapphire.
- Other option: before and after each tested sample drop, a standard material drop and calculation of an average sensitivity coefficient.

Overlaid thermograms obtained from sapphire drops with an Alexys calorimeter at 800°C (0.214µV/mW) and 1000°C (0.152µV/mW)

C_P measurements

- The specific enthalpy of MgTiO₃ is firstly determined at 523°C (479.7 ±8 J/g) and at 574°C (527.9 ±13 J/g)
- The average C_p is then calculated by dividing the specific enthalpy difference by the temperature difference
- The average specific heat capacity at 548.5°C was thus found equal to 0.945 ± 0.025 J.g-1.K-1.

Drops of Sapphire and MgTiO₃ at 574°C

C_P measurements

- The specific enthalpy of MgTiO₃ is firstly determined at 523°C (479.7 ±8 J/g) and at 574°C (527.9 ±13 J/g)
- The average C_p is then calculated by dividing the specific enthalpy difference by the temperature difference
- The average specific heat capacity at 548.5°C was thus found equal to 0.945 ± 0.025 J.g-1.K-1.

Drops of Sapphire and MgTiO₃ at 574°C

Conclusions

 The calorimetric methods based on Calvet principle are applied to determine accurate heat capacities (and other thermodynamic data...) over large temperature, pressure, atmosphere conditions

Thanks for your attention!

Calvet type 3D sensor and its relevance to Cp measurements

Stéphan MOREAU– SETARAM Instrumentation

AK-Thermophysik meeting April 26-28th 2016, Wien , Austria

