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Summary 

 Calorimetric signal 

 Calvet 3D sensors 

 Temperature scanning methods 

 Isothermal methods 



 Thermodynamic data 
 Heat capacity 

 
 
 
 
 CP is measured thanks to the measurement of the magnitude of the DSC signal  
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Calorimetric signal 

 DSC signal – simplified equation 
 
 
 
 
 
 
 
 

 To improve the CP determination it is possible to     
  Increase the scanning rate 
  Increase the sample mass 
  Increase the detector sensitivity 
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Calorimetric signal 

 Conventional 2D sensors 
 Flat shaped thermocouples 

 Heat flow is detected through the bottom of the crucible 
 A bad sample –crucible contact impacts the final result -> Bias 
 Limited to small scale samples  

 
 Efficiency losses at high temperature 

 Pt / PtRh10%: 2 times less sensitive at 1000°C 
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Calorimetric signal 

 Conventional 2D sensors 
 Flat shaped thermocouples 

 Calibration from reference material melting 
 Limited number of substances, i.e. of calibration temperatures 
 Large uncertainty between 2 calibration temperatures 

 Calibration from CP reference material 
 Method with 3rd test is mandatory 
 Limited number of reference materials 

 

 

Recommended materials for the calibration  of heat 
capacity measurements vs. temperature range 



 Calvet sensors for low and very low temperatures 

 

 

 

 

 

 

 

 The sensor surrounds the sample 

 Heatflow measurement is  
 Quantitative and less depending on the calibration 

 Less depending on the crucible, type and sample shape 

 The sensitivity coefficient is increased (multiple thermocouples) 

 Most cases: available sample volume higher 

Calvet 3D Sensors 



 Calvet sensors for low and very low temperatures 

 Sensitivity coefficient determined by the Joule effect method 

 At any temperature over the temperature range of the calorimeter 

 

Sensitivity : S = [µV] / [mW] 
[J] = [W] . [s] 

Calvet 3D Sensors 



 Calvet sensors for low and very low temperatures 

 Larger number of calibration points/temperatures 

 Regression more reliable: less uncertainty on S between 2 points 

 2 trials method is accurate enough with this type of sensors 

Calvet 3D Sensors 

Typical calibration curve 
for BT2-15: one point 
every ~10°C 



 Calvet sensors for low and very low temperatures 

Calvet 3D Sensors 

Calorimeter/DSC µSC BT2.15 MS80 C80 SENSYS Evo 

Temperature 

range 
-40 / 200°C -196 / 200°C 30 / 200°C 30°C / 300°C -120°C / 830°C 

Thermocouples 

number / pile 
N/A 450 >1000 190 120 

Standard sample 

volume 
0.85mL 12.5mL 100mL 12.5mL 0.25mL 

Max sensitivity 

value 
180µV/mW 40µV/mW 50µV/mW 30µV/mW 7µV/mW 



 Calvet sensors for low and very low temperatures 

 

 

 

 

 

 

 

 

Temperature scanning  
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 Instrument: Sensys Evo DSC 

 Sample: sapphire 

 Mass: 616,4 mg 

 Rate: 3°C/min 

 The deviation between the measured and literature values is less than 1%. 

Temperature scanning  



 Instrument: µSC 

 Sample: deionized water 

 Mass: 195.89mg 

 Rate: 0.1K/min 

 The deviation between the measured and literature values is less than 
0.5%.  

 

 

Temperature scanning  



 Instrument : C80 

 Low density insulation materials 

 Aerogel: Spaceloft® (50kg.m-3, extremely low conductivity 14mW/m.K at 40°C) 

 Deprom: PS-based (extremely low density 40kg.m-3, low conductivity 27mW/m.K) 

 Expanded PVC relatively dense 

 Samples heated from 30°C to 45°C @ 0.15 °C.min-1 
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Spaceloft® is a flexible, 
nanoporous aerogel blanket 
insulation in residential and 

commercial building 
applications. 

Temperature scanning  



 Quasi-Calvet sensors for high 
temperatures 

 
 CP rod for Labsys Evo 

 
 18 type S thermocouples (1600°C) 

 
 Sample volumes 

 0.380mL (Pt crucible) 
 0.235mL (With alumina liner) 

 

 Max sensitivity 0.5µV/mW   
 2.5 times more than an equivalent 

type S DSC rod 

Calvet Type rod vs DSC rod
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Temperature scanning  



 High temperature quasi-Calvet sensors  
 

 HF-DSC sensors for HT calorimeters 
 

 T ranges 
 20 to 1400°C (Pt/PtRh10%) 
 20 to 1600°C (PtRh6%/PtRh30%) 

 
 Heating rate range   

 0.01 to 20°C/min 

 
 Volume : 0.450 mL 

 
 Dimensions :  

 Diameter : 6 mm 
 Height : 16 mm 

Temperature scanning  



Improved High Low Magnitude of 

the signal 

Shift 

D(µV) = S(µV.W
-1

) x m(g) x Cp(J.g
-1

.K
-1

) x V(K.s
-1

) 

Temperature scanning  

 High temperature quasi-Calvet sensors  
 



 Characterization of NaF and NaLaF4  
 Materials potentially to be used for cooling systems of nuclear 

reactors of Generation IV (Molten Salt Reactor) 

 Step mode, platinum crucible and boron nitride liner 

 Tests from 473 K to 1213 K with steps of 15 K @ 2 K/min 

KJ.P.M. van der Meer et al. / J. Chem. Thermodynamics 38 (2006) 1260–1268 

Temperature scanning  



 Drop calorimetry 
 Principle 

 The sample is dropped from room 
temperature in the calorimeter 
chamber maintained at a given 
isothermal temperature  

 Two drops at similar 
temperatures allow determining 
the average CP between these 
temperatures 
 

 S depends on temperature and 
filling level of the sensor 
 A reference material drop is 

necessary to frequently reassess 
the sensitivity coefficient 
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Isothermal methods 



• Alexys: high-sensitivity Calvet calorimeter 
optimized for drop calorimetry isothermal 
operations at temperatures up to 1000 °C,  
designed based on Prof. Alexandra 
Navrotsky’s (UC Davis, Thermochemistry lab) 
experience. 

 

 

• MultiHTC: High temperature drop calorimeter  
 Temperature ranges 

 20 to 1300°C (Pt/PtRh10%) 
 20 to 1500°C (PtRh6%/PtRh30%) 

Isothermal methods 



 In both detectors, the arrangement of thermocouples 
welding (thermopile) on the surface of the experimental 
chamber at varying heights provides good integration of the 
heat exchanges. 

 

Isothermal methods 



 Calibration coefficients at the tested temperature can be  determined by drops of 
platinum and/or  standard synthetic sapphire. 

 Other option: before and after each tested sample drop, a standard material drop 
and calculation of an average sensitivity coefficient.  

Isothermal methods 

Overlaid thermograms obtained from 
sapphire drops with an Alexys 

calorimeter at 800°C (0.214µV/mW) 
and 1000°C (0.152µV/mW)  
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Isothermal methods 

 CP measurements  

 The specific enthalpy of MgTiO3 is 
firstly determined at 523°C (479.7 
±8 J/g) and at 574°C (527.9 ±13 
J/g) 

 The average CP is then calculated 
by dividing the specific enthalpy 
difference by the temperature 
difference 

 The average specific heat capacity 
at 548.5°C was thus found equal 
to 0.945 ± 0.025 J.g-1.K-1. 

Drops of Sapphire and MgTiO3 at 
574°C  
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Conclusions 

 The calorimetric methods based on Calvet principle are 
applied to determine accurate heat capacities (and other 
thermodynamic data…) over large temperature, pressure, 
atmosphere conditions  
 



Thanks for your attention! 
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