Bayerisches Zentrum für Angewandte Energieforschung e.V.

Experimentelle Bestimmung der effektiven Wärmeleitfähigkeit von komplexen anisotropen Strukturen F. Hemberger

Sitzung des AKT 09.03.2015 in Aachen

Kontakt: ZAE Bayern | Frank Hemberger | Am Galgenberg 87 | 97074 Würzburg T +49 931 70564-326 | frank.hemberger@zae-bayern.de

ZAE BAYERN Bayerisches Zentrum für Angewandte

Energieforschung

© ZAE Bayern

ZAE BAYERN Bayerisches Zentrum für Angewandte Energieforschung

- 1. Motivation
- 2. Fallbeispiele
- 3. Messeinrichtung
 - evakuierbare Zweiplattenapparatur
- 4. Thermische Kontaktwiderstände
 - Korrekturverfahren
- 5. Laterale Wärmeströme
 - Korrekturverfahren

Warum messen und nicht nur simulieren?

ZAE Bayern: Simulation des U-Wertes eines Fensterrahmenprofils nach DIN

- Thermische Kontaktwiderstände und Übergangskoeffizienten
 - unbekannt oder nur teilweise zugänglich
- Konvektion und Strahlung in Hohlräumen und im Außenbereich
 - oft nur stark vereinfacht umgesetzt
- Multi-Skalenproblematik
 bei numerischen Simulationen

Honeycomb Tragstrukturen

Ziel:

- thermische Optimierung der Tragestrukturen f
 ür die Solarpaneele der Mercury Sonde "Bepi Colombo"
- zuverlässige Bestimmung der effektiven Wärmeleitfähigkeit im Vakuum
- $\lambda_{eff} = 1 2 W(m \cdot K)^{-1}$

- Oberflächen aus CFC
- Wabenkern aus CFC oder Aluminium
- verschiedene Verklebungen

Multi-Layer Insulation

Bayerisches Zentrum für Angewandte Energieforschung

www.rossie.com

Quelle: NASA

- sehr niedrige effektive Wärmeleitfähigkeit
 im Hochvakuum
- vergleichsweise hohe laterale Wärmeleitfähigkeit, metallisierte Kunststoff- oder Keramikfolien
- unterschiedlichste Konzepte bei den Abstandshaltern

Stützstruktur für Vakuumisolationsverglasung

ZAE BAYERN **Bayerisches Zentrum** für Angewandte

Vakuumisolationsverglasung mit innerer Stützstruktur (©ZAE Bayern)

Querschnitt durch den Messaufbau (©ZAE Bayern)

Ausgefrorenes Gas in einer Kryoisolation - speziell entwickelter Probenbehälter für die Zweiplattenapparatur

position x

 λ_4

 d_4

Latentwärmespeicher

Experimentelle Bestimmung der effektiven Wärmeleitfähigkeit eines Systems mit makroverkapseltem PCM (©ZAE Bayern)

ZAE BAYERN Bayerisches Zentrum für Angewandte Energieforschung

Kristallisation bei einem Salzhydrat (©ZAE Bayern)

- effektive Wärmeleitfähigkeit eines PCM's während des Phasenübergangs
- effektive Wärmeleitfähigkeit kompletter Komponenten

Kühldeckenelement mit PCM (©ZAE Bayern)

09.03.2015 - Vortrag auf der Sitzung des AKT

Wärmewiderstand von kompletten Baugruppen

Hot Box Probenhalter mit Dachfenster (©ZAE-Bayern)

ZAE BAYERN

Bayerisches Zentrum für Angewandte Energieforschung

ZAE Bayern: Simulation des U-Wertes eines Fensterrahmenprofils nach DIN

incl. Wärmebrücken

- Gebäudebereich
- Automotive
- Appliances

Plattenverfahren – Messung nach DIN EN 12667

09.03.2015 - Vortrag auf der Sitzung des AKT

Zweiplattengerät

Einige	Anforde	erungen	aus	der	Norm:		
N. /	al a a fu 8 m					—	

- Mindestwärmedurchlasswiderstand 0.5 m² K / W, (entspricht bei 0.02 W/(mK) einer Dicke von 1 cm)
- homogene Proben (Inhomogenität kleiner 10% Prüfkörperdicke, Ausnahme Schichtproben)
- Einschränkungen bei starren Proben infolge von Kontaktwiderständen (0.5% des Wärmewiderstandes der Probe) (z. B. Probe mit 0.02 W/(mK) und 2 cm Dicke erlaubt max. äquivalent Luftspalt von 0.13 mm)
- Probendimensionen beschränkt durch
 - Gerätegröße
 - Wärmewiderstand der Probe (Kontaktwiderstand)
 - Querwärmeströme

für Angewandte Energieforschung

Evakuierbare Zweiplattenapparatur

Temperatur:

interner Gasdruck: (Luft, N2, Ar, He etc.) -190°C bis +500°C 10⁻⁵ bis 1000 mbar

externer Lastdruck:

0 bis 3 bar

Emissivität der Plattenoberflächen: 0.8

Wärmeleitfähigkeitsbereich: 0.0001 bis 0.1 W(m·K)⁻¹

Zweiplattenapparatur Lola3 (©ZAE Bayern)

Plattenverfahren - Messgrößen

Elektrische HeizleistungPTemperaturgradient: ΔT Fläche der zentralen Messplatte:AProbendicke:d

Gemessener Wärmedurchgangskoeffizient:

$$k = \frac{P}{2A \cdot \Delta T} \quad \left[\frac{W}{m^2 \cdot K}\right]$$

Wärmedurchlasskoeffizient:

$$\Lambda = k - \ddot{\mathrm{U}}\mathrm{bergangskoeffizienten}$$

 $\left[\frac{W}{m^2 \cdot K}\right]$

(Effektive) Wärmeleitfähigkeit:

$$\lambda = \Lambda \cdot d \quad \left[\frac{W}{m \cdot K}\right]$$

ZAE BAYERN

Bayerisches Zentrum für Angewandte Energieforschung

Vermessung von harten Proben mit hoher Wärmeleitfähigkeit

Wärmeleitfähigkeit BK7 Referenzproben

Harte Proben mit hoher Wärmeleitfähigkeit

Energieforschung

Übergangswiderstände, am Beispiel der Honeycomb Struktur

Mit der bekannten Wärmeleitfähigkeit der Referenzprobe (BK7) wird der Wärmewiderstand der eingesetzten Grafitfolien bzw. Silikonplatten bestimmt.

Thermischer Kontaktwiderstand bekannt

Korrektur von lateralen Wärmeströmen

ZAE BAYERN **Bayerisches Zentrum** für Angewandte

Energieforschung

Annahme: Laterale Verluste unabhängig von ΔT .

- mit zunehmenden ΔT , verringert sich der Anteil der lateralen Verluste an der gemessenen Heizleistung
- Verlustkorrektur: zwei unterschiedliche ΔT bei jeder Mitteltemperatur
- Extrapolation $\Delta T \rightarrow \infty$ liefert wahren Wert für die (effektive) Wärmeleitfähigkeit

Experimentelle Korrektur von lateralen Wärmeströmen

Präzise Korrektur von lateralen Wärmeströmen möglich

ZAF BAYER

Messunsicherheit

Thermal resistance of honeycomb structures - overview of uncertainties according to GUM

Relative uncertainty of

 Reference material thermal conductance 	5.00%
 Reference material thermal conductance measurement 	3.85%
Contact resistance	32.90%
 Sample conductance measurement 	7.19%
Corrected sample transmittance	10.70%
 Sample thickness 	0.27%
Corrected sample effective thermal conductivity	10.70%

Expanded corrected sample effective thermal conductivity (k=2): 21.50%

www.rossie.com

Beispiel: Evakuierte "Multi-Layer Insulation" bei 498K

Zusammenfassung

Fortgeschrittene Korrekturverfahren ermöglichen die Vermessung von

- anisotropen Proben
- mit harten Oberflächen
- mit hoher oder sehr niedriger Wärmeleitfähigkeit

in Plattenapparaturen mit geeigneter experimenteller Ausstattung, d. h.

- Freie Wahl der Atmosphäre
- Reproduzierbare oder besser kontrollierbare
 mechanische Belastung des Probenstapels während der Messung

Energieforschung

Bayerisches Zentrum für Angewandte Energieforschung

Vielen Dank für Ihre Aufmerksamkeit!

Aktuelle und ehemalige Mitarbeiter des ZAE Bayern die an den vorgestellten Inhalten u. a. gearbeitet haben: Matthias Geißler, Ulrich Heinemann, Jörg Hetfleisch, Stefan Rausch, Katrin Swimm, Stephan Vidi