Bayerisches Zentrum für Angewandte Energieforschung e.V.

## Erweiterung einer Apparatur zur winkelabhängigen Bestimmung des Emissionsgrades bei hohen Temperaturen

## M. Rydzek, T. Stark, M. Arduini-Schuster, J. Manara

Tagung des AK-Thermophysik am 03. und 04. Mai 2012 in Graz



ZAE BAYERN Bayerisches Zentrum für Angewandte Energieforschung

MIT SONNE UND VERSTAND.

© ZAE Bayern

#### **MOTIVATION - ANWENDUNG**

#### Bedeutung des Emissionsgrades:

- <u>Generell:</u> Wärmeübertragung durch Wärmeleitung, Konvektion und Wärmestrahlung.
- Wärmestrahlung bei hohen Temperaturen immer bedeutender.
- Für reale Oberflächen schwer zu berechnen.
- $\rightarrow$  Materialcharakterisierung und Optimierung
- → Berührungslose Temperaturbestimmung (Pyrometrie)





Der Emissionsgrad ist definiert als Quotient aus der abgestrahlten Leistung eines realen Körpers und der abgestrahlten Leistung eines schwarzen Körpers gleicher Temperatur.





## MÖGLICHKEITEN ZUR BESTIMMUNG DES EMISSIONSGRADES

Indirekte radiometrische Messung :

Bestimmung von Reflexionsund Transmissionsgrad mittels integrierender Kugel.

 $\rightarrow$  Berechnung des Emissionsgrades!





#### MÖGLICHKEITEN ZUR BESTIMMUNG DES EMISSIONSGRADES

#### Direkte radiometrische Messung:

Direkte Bestimmung der emittierten Wärmestrahlung!

Probe im Ofen heizen

Emittierte Strahlung detektieren

Vergleich mit Schwarzkörperstrahlung bei gleicher Temperatur









#### Schwarzkörper:

- Realisierung durch Hohlraumstrahler.
- Homogene Temperatur innerhalb des Hohlraums.
- Lambert'sche Reflexion an den Wänden.
- → Berechnung des Emissionsgrades des Schwarzkörpers aus dem Oberflächenemissionsgrad:

$$\begin{split} \varepsilon_{\lambda,\text{SK}} &= 1 - \rho_{\lambda,\text{SK}} = 1 - \frac{\rho_{\lambda,\text{OF}}}{1 - \rho_{\lambda,\text{OF}}} \sin^2 \frac{\alpha}{2} = 1 - \frac{\varepsilon_{\lambda,\text{OF}}}{1 - \varepsilon_{\lambda,\text{OF}}} \frac{1}{1 + \left(\frac{l}{r}\right)^2} \\ & \text{SK: Schwarzkörper} \\ \text{OF: Oberfläche} \\ \end{split}$$



Bayerisches Zentrum für Angewandte Energieforschung



#### **BESTIMMUNG DES EMISSIONSGRADES**



für Angewandte

Energieforschung

Intensität der Probe:



In die Berechnung des Emissionsgrades fließen neben der gemessenen Intensität auch die Temperatur der Probe und der Umgebung ein!









## Thermographie Vakuumtopf und Ofen: Konstante Umgebungstemperatur





© ZAE Bayern • AK-Thermophysik Graz • Matthias Rydzek • 03./04. Mai 2012

#### VERSUCHSAUFBAU





ZAE BAYERN

Bayerisches Zentrum für Angewandte Energieforschung

#### © ZAE Bayern • AK-Thermophysik Graz • Matthias Rydzek • 03./04. Mai 2012

## KALIBRIERUNG

**Bestimmung der Gerätefunktion:**  $i_{\lambda,\text{korrigiert}}(T_{1,2,3}) = C_2(\lambda) \left[ i_{\lambda,\text{gemessen}}(T_{1,2,3}) + C_1(\lambda) \right]$ 

- Konstante C<sub>1</sub> berücksichtigt die Wärmestrahlung, die das Spektrometer selbst emittiert.
- Konstante  $C_2$  umfasst die Anbauteile wie Spiegel, Blenden, Linsen usw.
- $\rightarrow$  Messung von 3 Schwarzkörperspektren.
- → Vergleich mit berechneten Planckkurven:
  - •3 Gleichungen pro Wellenlänge
  - •3N Gleichungen für 2N+3 Variablen

(N Wellenlängen und 3 Temperaturen)

 → Lösung des linearen Gleichungssystems mittels Least-Square-Methode.
Anpassung der gemessenen Spektren an die theoretisch berechneten.





#### **KALIBRIERUNG**



Bestimmung der relativen Unsicherheit der Kalibrierung:

© ZAE Bayern • AK-Thermophysik Graz • Matthias Rydzek • 03./04. Mai 2012



## **MESSUNGEN - TEMPERATURABHÄNGIG**



Keramikprobe (TiO<sub>2</sub> / Y<sub>2</sub>O<sub>3</sub>):

Zusammensetzung:

- 78,5 % Yttriumoxid
- 21,5 % Titandioxid

Eigenschaften:

- Probendicke: 3 mm
- Porosität: 45 %

Änderung des spektralen Emissionsgrads über weite Bereiche relativ gering.

Deutliche Absorptionspeaks bei ca. 3  $\mu$ m und 6,3  $\mu$ m.



## **MESSUNGEN - TEMPERATURABHÄNGIG**



Keramikprobe (TiO<sub>2</sub> / Y<sub>2</sub>O<sub>3</sub>):

#### Zusammensetzung:

- 78,5 % Yttriumoxid
- 21,5 % Titandioxid

Eigenschaften:

- Probendicke: 3 mm
- Porosität: 45 %

Rückgang der Absorptionspeaks mit steigender Probentemperatur.

- → Desorption von gebundenem Wasser aus der Probe.
- → Verbleib von gebundenen OH-Gruppen bei höheren Temperaturen auf Grund unterschiedlicher Bindungsenergien.



## **MESSUNGEN – WINKELABHÄNGIG (NICHTLEITER)**

Keramikprobe (TiO<sub>2</sub> /  $Y_2O_3$ ) bei  $T = 750 \degree$ C:

ZAE BAYERN Bayerisches Zentrum für Angewandte Energieforschung

Zusammensetzung: 1,0 60,0 % Yttriumoxid 0° 40,0 % Titandioxid 10° 0,9 20° 0,8 30° Eigenschaften: 40° Probendicke: 2 mm Emissionsgrad  $arepsilon_{_{\!A}}$ 0,7 -50° Porosität: 50 % • 60° 0,6 65° 0,5 70° •75° 0,4 80° 85° 0,3 0,2 0,1 0,0 10 12 18 14 16 20 8 22 6 Wellenlänge  $\lambda / \mu m$ 

## **MESSUNGEN – WINKELABHÄNGIG (NICHTLEITER)**

Keramikprobe (TiO<sub>2</sub> /  $Y_2O_3$ ) bei T = 750 °C:

Zusammensetzung:

- 60,0 % Yttriumoxid
- 40,0 % Titandioxid

Eigenschaften:

- Probendicke: 2 mm
- Porosität: 50 %





#### **MESSUNGEN – WINKELABHÄNGIG (NICHTLEITER)**

Keramikprobe  $(TiO_2 / Y_2O_3)$  bei  $T = 750 \degree$ C:

Zusammensetzung:

- 60,0 % Yttriumoxid
- 40,0 % Titandioxid

Eigenschaften:

- Probendicke: 2 mm
- Porosität: 50 %







## **MESSUNGEN – WINKELABHÄNGIG (HALBLEITER / GEMISCHE)**

V2A-Stahl bei T = 750 °C:

Zusammensetzung: Rostfreie Edelstahllegierung

- 18,0 % Chromanteil
- 10,0 % Nickelanteil

Eigenschaften:

 Passivschicht an der Oberfläche schützt vor Oxidation







## MESSUNGEN – WINKELABHÄNGIG (LEITER)

Kupferprobe bei  $\lambda = 5 \mu m$ :

Eigenschaften:

- polierte Kupferoberfläche
- Auf Grund des geringen Emissionsgrades ist die insgesamt abgestrahlte Intensität der Probe sehr niedrig.







#### **ZUSAMMENFASSUNG UND AUSBLICK**

#### Zusammenfassung:

- Umfassende Charakterisierung der Proben in einem großen Temperatur- und Winkelbereich möglich.
- Weitgehend automatisierte Messungen mittels PC-Ansteuerung.

#### Ausblick:

- Erweiterung des zugänglichen Temperaturbereichs auf rund  $T = 1400 \,^{\circ}$ C.
- Erweiterung des auflösbaren Spektralbereichs.
- Verbesserung der Temperaturbestimmung.



# VIELEN DANK

Kontakt: rydzek@zae.uni-wuerzburg.de



ZAE BAYERN Bayerisches Zentrum für Angewandte Energieforschung

#### MIT SONNE UND VERSTAND.

© ZAE Bayern • AK-Thermophysik Graz • Matthias Rydzek • 03./04. Mai 2012