

Ermittlung des normalen, spektralen Emissionskoeffizienten flüssiger Reinmetalle und Legierungen beim Pulsheizexperiment

Übersicht

- Motivation
- Das Experiment mit seinen Messgrößen
- Daten einiger Reinmetalle und Legierungen
- Ergebnisse der Untersuchungen
- Ausblick

Motivation

Wozu benötigt man Emissivitätsdaten?

- genauere Temperaturbestimmung
- dadurch genauere thermophysikalische Daten
- Eingangsdaten für Computersimulationen
- Grundlagenforschung (für flüssige Metalle und Legierungen)

Schnelles (ohm'sches) Pulsheizexperiment

Fakten:

- Heizraten bis zu 10⁸ K/s
- Spannungen bis maximal 10 kV
- Strom mehrere kA
- Experimentdauer 30 60 μs
- **3 Pyrometer:**
 - $\lambda = 650 \text{ nm}$: 2100 K 5500 K
 - $\lambda = 1570 \text{ nm}: 1100 \text{ K} 2500 \text{ K}$
 - $\lambda = 2200 \text{ nm}$: 800 K 2000 K
- Messatmosphäre: Luft, Vakuum, Stickstoff, Argon, Wasser

μs-Division-Of-Amplitude-Photopolarimeter (μs-DOAP)

Bestimmung des normalen spektralen Emissionskoeffizienten (ϵ) bei λ = 684.5 nm

Prinzip des µs-DOAP:

Messung der Polarisationsänderung eines an der Probenoberfläche reflektierten Laserstrahls.

- Stokes Formalismus zur Beschreibung der Polarisation
- keine bewegten Teile
- berührungslose Technik

Prinzipieller Aufbau: µs-DOAP

Der Stokes Formalismus:

Die Stokes Parameter:

Der Stokes Vektor:

$$S_{0} = I_{0}$$

$$S_{1} = I_{x} - I_{y}$$

$$S_{2} = I_{+\pi/4} - I_{-\pi/4}$$

$$S = \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{bmatrix}$$

$$S = \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{bmatrix}$$

Vorteile:

- keine bewegten Teile
- sehr kurze Experimentdauer möglich
- damit Messungen in der flüssigen Phase von Metallen

Harald Reschab	Karlsruhe, 5. März 2010	Arbeitskreis Thermophysik

µs-DOAP Setup (schematisch)

Polarization State Generator (PSG)

- LD Diodenlaser
- LP Linearpolarisator
- QWR l/4-Plättchen
- L Linse
- S Probe

Polarization State Detector (PSD)

IF – Interferenzfilter BS – Strahlteiler CCD – CCD-Kamera FS – Lochblende GTP – Glan-Thompson-Prisma D0-D3 – Detektoren

Messgrößen:

Karlsruhe, 5. März 2010

Emissivität @ 684,5 nm

Karlsruhe, 5. März 2010

Pyrometrie und Emissivität

Planck'sches Strahlungsgesetz:

$$L(\lambda,T) = \frac{c_2}{\lambda^5 \cdot \pi} \cdot \frac{1}{e^{\frac{c_2}{\lambda \cdot T}} - 1}$$

Pyrometrische Temperaturbestimmung:

$$T(t) = \frac{c_2}{\lambda \cdot \ln \left[1 + \frac{\varepsilon}{\varepsilon_m} \cdot \frac{L_m}{L} \cdot \left(e^{\frac{c_2}{\lambda \cdot T_m}} - 1\right)\right]}$$

Temperaturbestimmung

Zur Temperaturbestimmung ist folgende Annahme notwendig:

$$\frac{\mathcal{E}}{\mathcal{E}_m} = 1 \quad \text{: konstante Emissivität} \quad \varepsilon \neq \varepsilon(\mathsf{T})$$

Aber:

Muss die Emissivität in der flüssigen Phase konstant sein?

3 möglich Verläufe:

- ✓ abnehmende Emissivität
- ✓ konstante Emissivität
- ✓ steigende Emissivität

Beispiel für abnehmende Emissivität

Tantal:

abnehmendes $\boldsymbol{\epsilon}$

in der flüssigen Phase!

Normaler spektraler Emissionskoeffizient von Tantal bei

684.5 nm als Funktion der Strahlungstemperatur.

Beispiel für konstante Emissivität

Niob:

konstantes **e**

in der flüssigen Phase!

Normaler spektraler Emissionskoeffizient von Niob bei 684.5 nm als Funktion der Strahlungstemperatur.

Beispiel für steigende Emissivität

Kupfer:

steigendes **ɛ**

in der flüssigen Phase!

Normaler spektraler Emissionskoeffizient von Kupfer bei

684.5 nm als Funktion der Strahlungstemperatur.

Auswirkung der Emissivitätsänderung

Spezifische Enthalpie von Tantal als Funktion der Temperatur: schwarze Linie: konstantes ε ; rote Linie: mit gemessenem ε Insert: vergrößerter Bereich zwischen 4250 K und 4500 K

Emissivität ist in der flüssigen Phase ist NICHT unbedingt konstant.

Alle 3 verschiedene Verhalten für ε im Flüssigen wurden beobachtet:

- konstante Emissivität, z.B. Nb, Va
- zunehmende Emissivität, z.B. Ni, Cu, Ag
- abnehmende Emissivität, z.B. W, Ta, Zr

Pyrometrisch bestimmte Temperatur ändert sich unter Einbeziehung des gemessenen Emissionskoeffizienten.

Dadurch können sich Änderungen der thermophysikalischen Daten bis zu ~ 10 % ergeben.

Emissionskoeffizient für Ni-Basislegierungen

Normaler spektraler Emissionskoeffizient von Nimonic 80A (links) und Inconel 718 (rechts) bei 684.5 nm als Funktion der Strahlungstemperatur bei 1570 nm.

Ähnlicher Verlauf in der flüssigen Phase

Usveld Deschoh			
Haraid Reschab Kansruhe, 5. Marz 2010 Arbeitskreis Thermoph	Harald Reschab	Karlsruhe, 5. März 2010	Arbeitskreis Thermophysik

Emissionskoeffizient für Fe-Basislegierungen

Normaler spektraler Emissionskoeffizient von X2CrNiMo18-14-3 (links) und stabilaustenitischem Stahl ähnlicher Zusammensetzung (rechts) bei 684.5 nm als Funktion der Strahlungstemperatur bei 1570 nm.

Unterschiedlicher Verlauf in der flüssigen Phase

|--|

Ergebnisse der Untersuchungen

- Der Emissionskoeffizient ist in der flüssigen Phase nicht zwingend konstant
- Bei Reinmetallen wurden fallende, konstante und steigende Verläufe des Emissionskoeffizienten in der flüssigen Phase beobachtet.
- Alle bisher untersuchten Legierungen zeigten eine mehr oder weniger stark steigende Charakteristik in der flüssigen Phase.
- Die pyrometrisch bestimmte Temperatur ändert sich mit dem Emissionskoeffizienten (z. B. um -0.20%/100K bei untersuchten Ni-Legierungen).
- Thermophysikalische Daten im Flüssigen ändern sich bis zu 10%.

Ausblick

- Untersuchung weiterer Legierungen
- Kombination von Levitation und Emissionsgradmessung
- Verbesserung der Elektronik des µs-DOAP

Danke für Ihre Aufmerksamkeit