Sitzung des AK-Thermophysik am 04. / 05. März 2010

Bestimmung des Brechungsindex von semitransparenten Materialien

M.H. Keller, A. Erb, J. Manara, M. Arduini-Schuster

- •Relevanz
- •Theorie
- Messaufbau
- Ergebnisse
- •Fazit

Grundlagen

Snelliussches Brechungsgesetz

 $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$

Grundlagen

Snelliussches Brechungsgesetz

 $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$

Komplexer Brechungsindex

 $m = n + i \cdot k$

Bestimmung des Extinktionskoeffizienten

ZAE BAYERN

Modellierung des Strahlungstransportes

Randbedingungen: senkrechter Einfall, keine Streuung

Reflexion an Grenzfläche:

$$\rho = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

Absorption:

$$I(x) = I(0) \cdot \exp\left(-\frac{4 \cdot \pi \cdot k}{\lambda}x\right) = I(0) \cdot \exp(-\tau)$$

Theorie

Zusammenhang mit Messgrößen bei planparallelen Proben:

$$T = \frac{(1-\rho)^2}{1-\rho^2 \tau^2} \qquad R = \rho \left[1 + \frac{(1-\rho)^2 \tau^2}{1-\rho^2 \tau^2} \right] \qquad A = \frac{(1-\rho)(1-\tau)}{1-\rho \tau}$$

Theorie

Zusammenhang mit Messgrößen bei planparallelen Proben:

$$T = \frac{(1-\rho)^2}{1-\rho^2\tau^2} \qquad R = \rho \left[1 + \frac{(1-\rho)^2\tau^2}{1-\rho^2\tau^2} \right] \qquad A = \frac{(1-\rho)(1-\tau)}{1-\rho\tau}$$

Auflösen nach ρ und τ liefert:

$$\rho = \frac{1}{2(2-R)} \left(C - \sqrt{C^2 - 4R(2-R)} \right) \quad \text{mit} \quad C = 1 + 2R + T^2 - R^2$$

 $\tau = \left(\frac{R}{\rho} - 1\right)\frac{1}{T}$

Effektive Medien Theorie:

Effektive Medien Theorie:

Brechungsindex nach Bruggemann:

$$\eta_1 \left(\frac{m_1^2 - m_{\text{eff}}^2}{m_1^2 + 2m_{\text{eff}}^2} \right) + \eta_2 \left(\frac{m_2^2 - m_{\text{eff}}^2}{m_2^2 + 2m_{\text{eff}}^2} \right) = 0$$

Messaufbau - Transmissionsgrad ZAE BAYERN **Michelson Interferometer** verstellbarer Spiegel Strahlteiler Ulbrichtkugel Globar Ap<u>ertur</u> Detektor **FTIR-Spektrometer** Probe

Messaufbau - Reflexionsgrad

© Bayerisches Zentrum für Angewandte Energieforschung e.V.

$Vergleichsmessung-Al_2O_3$

ZAE BAYERN

 $\ensuremath{\mathbb{C}}$ Bayerisches Zentrum für Angewandte Energieforschung e.V.

Vergleichsmessung – TiO_2

ZAE BAYERN

[©] Bayerisches Zentrum für Angewandte Energieforschung e.V.

© Bayerisches Zentrum für Angewandte Energieforschung e.V.

Vergleichsmessung – Y_2O_3

Komposit 1: Vergleich Messung und Theorie

ZAE BAYERN

[©] Bayerisches Zentrum für Angewandte Energieforschung e.V.

Komposit 2: Vergleich Messung und Theorie

[©] Bayerisches Zentrum für Angewandte Energieforschung e.V.

- Brechungsindex reiner Materialien gut charakterisierbar, Ergebnisse mit Literaturwerten vergleichbar
- theoretische Berechnungen für Materialmischungen stimmen mit experimentell ermittelten Werten überein
- Ziel: Bestimmung Brechungsindex von Pulvern und porösen Stoffen

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

keller.marco@zae.uni-wuerzburg.de