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Objectives

• Charecterization of Sander sandstone

• Prediction of thermal properties using THB sensor

• Effect of various fluids on thermal performance

• Comparision of experimental results with various existing 
mixing and empirical laws

• Proposing an imperical relation to predict effective 
thermal conductivity



1. Chracterization of Sander sandstone

• Density and porosity

Mineral components

Parameters Quartz                  Feldspar             Mica           Plagioclase

Volume fraction (%) 54 21 18 7

Thermal conductivity (Wm-1K-1) [1] 4.52a 2.31 2.28 2.09

Thermal diffusivity (mm2s-1) 2.31 1.31 1.05 1.09

Specific heat capacity (Jkg-1K-1) [2] 740 685 760 730

Density (kgm-3) [1,2] 2648 2590 2850 2620

Bulk density (kgm-3) Water porosity (%)

Dry                Water-saturated Calculated Calculated by MIP Published [3]

2081             2247 16.54 18.62 17.80

[a] Average value of α-quartz and fused quartz has been taken.

• Thermophysical properties of mineral components



SEM Images

• Inside image• Surface image



Pore size distribution using MIP
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2. Features of Transient Hot-bridge sensor

• Transient Hot Bridge (THB) is a 

highly sensitive thermoelectric 

sensor

• Rapid thermal conductivity and 

diffusivity measurements

• Ability to measure from 0.02 to 

100 W/mK at temperatures up 

to 250 °C

• Three thermophysical 

parameters in one single 

experiment



2.1. Working equation for THB sensor

• The general equation for thermal conductivity measurement with THB 

sensor is,  
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Where,      is the temperature coefficient of resistance

is the effective resistance of the sensor 

is the effective length of the sensor 

is the electrical current through THB-Sensor

and                             slope of the THB-signal

32

2π4
98.0 








=

Is

mL

R

eff

effα
λ

ρ

λ

a
Cp =

α

effR

effL

Is

)/ln( 12

12

tt

UU
m

−
=



3. Experimental setup

(A) THB sensor, (B) sample halves, (C) air-tight box,
(D) climate chamber, (E) Keithley 2602 programmable source     
meter, (F) computer.

• Sample dimensions are 60 × 60 
× 100 mm³ each

• A programmable current source

• Output Signal is obtained in the 
form of voltage as a function of 
time

• Thermal conductivity and 
diffusivity are then calculated 
from the slope of the output 
signal



32

2π4
98.0 








=

Is

mL

R

eff

effα
λ

m



4. Theoretical models to predict λ

• Parallel model

• Series model

• Horai model

• Maxwell-Eucken upper model

• Maxwell-Eucken lower model

• Assad‘s model

• Effective mean theory
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5. Experimental results

• λe of Sander sandstone 
increases nonlinearly by 
increasing the λfluid

• Results of those models 
which take into account the 
structural characteristics are 
more closer to our 
experimental values

• Maximum error in case of 
Assad’s model is ±15%

• Difference decreases as the 
value of λe/λfluid

decreases

5.1. Thermal conductivity



5.2. Thermal diffusivity

• Linear dependance

• A small change of about 5% 

(ranging from 1.11 to 1.17 

mm2s-1 ) for all saturation 

cases 



5.3. Specific heat capacity

• Linear dependence

• Intersection at y-axis gives the 

average specific heat capacity 

of the solid constituents 

(Cpsolid =728.75 Jkg-1K-1 ) 



6. Developing a general equation for  

λ(T)

Where         is the thermal conductivity of sandstone at 25 °C

and      is the mesuring temperature

• Empirical relation has been derived from the experimental 

results in a temperature range -20 to 40 °C
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7. Result comparision at 25 °C

Saturating fluid Error (∆λb) in percent

Air ( dry sandstone) -1.10 ≤ ∆λ ≤ 1.09

Alcohol 0.30 ≤ ∆λ ≤ 0.51

50% alcohol, 50% 

water
-1.99 ≤ ∆λ ≤ 1.33

Water -1.45 ≤ ∆λ ≤ 1.80

Ice -0.06 ≤ ∆λ ≤ 0.76

b∆λ=[(λexp-λfit)/λfit]x100



Conclusions
• λeff of Sander sandstone increases nonlinearly by increasing the thermal

conductivity of pore filling fluids

• Results of those models which take into account the structural characteristics 
are more closer to our experimental values

• the specific heat capacity of Sander sandstone increases linearly by increasing 
the specific heat capacity of pore filling fluids

• Negligible effect on thermal diffusivity

• An empirical relation has been proposed to calculate effective thermal 
conductivity of sandstone filled with different saturates 

• λeff of Sander sandstone is directly proportional to λ25 and inversely  
proportional to the temperature (T)

• Transient hot-bridge sensor is an excellent sensor to measure thermophysical 
properties of porous rocks like sandstone



Thank you
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Mixing rule for specific heat capacity 
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