Thermophysical properties of Sander sandstone using Transient Hot-Bridge sensor

Muhammad Abid

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

Objectives

- Charecterization of Sander sandstone
- Prediction of thermal properties using THB sensor
- Effect of various fluids on thermal performance
- Comparision of experimental results with various existing mixing and empirical laws
- Proposing an imperical relation to predict effective thermal conductivity

1. Chracterization of Sander sandstone

• Density and porosity

Bulk density (kgm ⁻³)			Water porosity (%)					
Dry	Water-saturated		Calculated	Calculated by MIP	Published [3]			
2081	2247	-	16.54	18.62	17.80			

• Thermophysical properties of mineral components

	Mineral components					
Parameters	Quartz	Feldspar	Mica	Plagioclase		
Volume fraction (%)	54	21	18	7		
Thermal conductivity (Wm ⁻¹ K ⁻¹) [1]	4.52ª	2.31	2.28	2.09		
Thermal diffusivity (mm ² s ⁻¹)	2.31	1.31	1.05	1.09		
Specific heat capacity (Jkg ⁻¹ K ⁻¹) [2]	740	685	760	730		
Density (kgm ⁻³) [1,2]	2648	2590	2850	2620		

^[a] Average value of α -quartz and fused quartz has been taken.

SEM Images

• Surface image

• Inside image

Pore size distribution using MIP

2. Features of Transient Hot-bridge sensor

- Transient Hot Bridge (THB) is a highly sensitive thermoelectric sensor
- Rapid thermal conductivity and diffusivity measurements
- Ability to measure from 0.02 to 100 W/mK at temperatures up to 250 °C

2.1. Working equation for THB sensor

• The general equation for thermal conductivity measurement with THB sensor is,

$$\lambda = 0.98 \frac{\alpha R_{eff}^2}{4\pi L_{eff} m} \left(\frac{Is}{2}\right)^3 \qquad \dots \dots 1$$
$$C_p = \frac{\lambda}{a\rho} \qquad \dots \dots 2$$

- Where, α is the temperature coefficient of resistance
 - R_{eff} is the effective resistance of the sensor
 - L_{eff} is the effective length of the sensor
 - *Is* is the electrical current through THB-Sensor

and
$$m = \frac{U_2 - U_1}{\ln(t_2 / t_1)}$$
 slope of the THB-signal

3. Experimental setup

- Sample dimensions are 60 × 60 × 100 mm³ each
- A programmable current source
- Output Signal is obtained in the form of voltage as a function of time
- Thermal conductivity and diffusivity are then calculated from the slope of the output signal

(A) THB sensor, (B) sample halves, (C) air-tight box, (D) climate chamber, (E) Keithley 2602 programmable source meter, (F) computer.

4. Theoretical models to predict λ

F

Q

- **Parallel model** $\lambda_e^P = \phi \lambda_f + \lambda_s (1-\phi)$
- Series model $\lambda_e^S = \left[\frac{\phi}{\lambda_f} + \frac{(1-\phi)}{\lambda_s}\right]^{-1}$
- Horai model $\lambda_e^H = \left(\frac{\lambda_e^S + \lambda_e^P}{2}\right)$
- Maxwell-Eucken upper model
- Maxwell-Eucken lower model λ_{e}^{ME}
- Assad's model $\lambda_e^A = \lambda_s \left(\frac{\lambda_f}{\lambda_s}\right)^m$
- Effective mean theory $\lambda_e^{EMT} = 0.25 \left[(3\phi - 1)\lambda_f + (3(1-\phi) - 1)\lambda_s + \sqrt{((3\phi - 1)\lambda_f + (3(1-\phi) - 1)\lambda_s)^2 + 8\lambda_s\lambda_f} \right]$

$$U = \lambda_f \left[\frac{3 + 2(1 - \phi)(\frac{\lambda_s}{\lambda_f} - 1)}{3 + (1 - \phi)(\frac{\lambda_f}{\lambda_s} - 1)} \right]$$
$$L = \lambda_s \left[\frac{3 + 2\phi(\frac{\lambda_f}{\lambda_s} - 1)}{3 + \phi(\frac{\lambda_s}{\lambda_f} - 1)} \right]$$

5. Experimental results

5.1. Thermal conductivity

- λ_e of Sander sandstone increases nonlinearly by increasing the λ_{fluid}
- Results of those models which take into account the structural characteristics are more closer to our experimental values
- Maximum error in case of Assad's model is ±15%
- Difference decreases as the value of $\lambda_e / \lambda_{fluid}$ decreases

5.2. Thermal diffusivity

- Linear dependance
- A small change of about 5% (ranging from 1.11 to 1.17 mm²s⁻¹) for all saturation cases

5.3. Specific heat capacity

• Linear dependence

 Intersection at y-axis gives the average specific heat capacity of the solid constituents (Cp_{solid} =728.75 Jkg⁻¹K⁻¹)

7. Result comparision at 25 °C

Saturating fluid	Error $(\Delta \lambda^{b})$ in percent				
Air (dry sandstone)	$-1.10 \le \Delta \lambda \le 1.09$				
Alcohol	$0.30 \le \Delta \lambda \le 0.51$				
50% alcohol, 50% water	$-1.99 \le \Delta\lambda \le 1.33$				
Water	$-1.45 \le \Delta \lambda \le 1.80$				
Ice	$-0.06 \le \Delta\lambda \le 0.76$				

 $^{b}\Delta\lambda = [(\lambda_{exp} - \lambda_{fit})/\lambda_{fit}]x100$

Conclusions

- λ_{eff} of Sander sandstone increases nonlinearly by increasing the thermal conductivity of pore filling fluids
- Results of those models which take into account the structural characteristics are more closer to our experimental values
- the specific heat capacity of Sander sandstone increases linearly by increasing the specific heat capacity of pore filling fluids
- Negligible effect on thermal diffusivity
- An empirical relation has been proposed to calculate effective thermal conductivity of sandstone filled with different saturates
- λ_{eff} of Sander sandstone is directly proportional to λ_{25} and inversely proportional to the temperature (*T*)
- Transient hot-bridge sensor is an excellent sensor to measure thermophysical properties of porous rocks like sandstone

Thank you

References

- [1] Horai K and Simmons G 1969 *Earth and Planet. Sci. Lett.* **6** 359-368
- [2] Douglas W and Jacob S 2004 *Natural Resources Research* **13** 97-22
- [3] Kubicar L, Vretenar V, Bohac V and Tiano P 2006 Int. J. Thermophys.27 220-34
- [4] Douglas W and Jacob S 2004 *Natural Resources Research* **13** 123-130

Mixing rule for specific heat capacity $Cp_e = \left[\frac{\rho_{solid}Cp_{solid}(1-\phi) + \rho_{fluid}Cp_{fluid}\phi}{\rho_e}\right]$

Table

Pore filling fluid	λ _{fluid} (Wm ⁻¹ K ⁻¹) [15,16]	λ (Wm ^{-T} K⁻¹)	a _{fluid} (mm ² s ⁻¹) [15,22]	a _{ny} (mm ² s ⁻)	a_{ε} (mm^2s) 1 [7]	Cp _{fluid} (Jkg ^{il} K ¹) [15,23]	<i>Ср_{еф}</i> (Jkg ¹ K ⁻¹)	Cp. (Jkg ¹ K ⁻¹) [7]	<i>Cp_e</i> (Jkg ¹ K ⁻¹) [eq. 10]	^ρ ∰ (kgm³)
Air	0.026	1.67	18.50	1.010	1.035	1005	795	806	769	2081
Toluene	0.135	2.12	0.095	1.150		1719	841		851	2192
Alcohol	0.175	2.23	0.085	1.160		2414	894		905	2149
75% alcohol, 25% water	0.227	2.36	0.082	1.156		2818	929		918	2190
50% alcohol, 50% water	0.311	2.43	0.087	1.157		3299	952		973	2200
25% alcohol, 75% water	0.434	2.50	0.107	1.140		3935	991		1025	2216
Water	0.598	2.56	0.141	1.120	1.10	4180	1014	1018	1044	2252