

Thermische Optimierung einer Vakuumverglasung

K. Güttler, H. Weinläder, H.-P. Ebert

Bayerisches Zentrum für Angewandte Energieforschung e. V. Am Hubland 97074 Würzburg

Guettler@zae.uni-wuerzburg.de

Inhalt

- Motivation
- Diskussion und Optimierung der einzelnen Wärmetransportmechanismen im Vakuumisolierglas
- Messung des Stützenbeitrags zum Wärmetransport durch die Vakuumverglasung

Motivation

Fenster stellen thermische Schwachstellen in Gebäuden dar:

- Fassade: $U \le 0.3 \ W/(m^2 K)$
- Doppelverglasung: $U \approx 1.1 \text{ W/(m^2K)}$
- Dreifachverglasung: $U\approx 0.6~W/(m^2K)$

Motivation

Ziel: Neue Verglasung mit folgenden Eigenschaften:

- dünner und
- leichter als Dreifachverglasung
- mit U < 0.5 W/(m²K)

Idee: Evakuieren des Scheibenzwischenraumes einer Doppelverglasung

- ⇒ Eliminierung der Wärmeübertragung durch Gaswärmeleitung und Konvektion
- ⇒ "Vakuumisolierglas" (VIG)

Umsetzung: Forschungsprojekte V-G und Pro V-G

VIG-Aufbau

Totaler Wärmedurchlasskoeffizient von VIG:

$$\Lambda_{\text{VIG}} = \Lambda_{\text{gas}} + \Lambda_{\text{stütz}} + \Lambda_{\text{rad}} (\leq 0,5) W/(m^2K)$$

⇒ Thermische Systemoptimierung!

- Λ_{gas} : Wärmeleitung durch das Restgas
- $\Lambda_{stütz}$: Wärmeleitung durch die Stützen
- Λ_{rad} : Wärmestrahlung zw. den Glasplatten
- Λ_{RV} : Wärmeleitung durch den Randverbund

Einfluss der Gaswärmeleitung

⇒ Gasdruck < 10⁻³ hPa

Einfluss der Wärmestrahlung

 \Rightarrow Bei einseitiger Beschichtung ist Softcoating mit $\varepsilon = 0,03$ erforderlich!

Einfluss der Stützen

 $\Lambda_{stütz}$ hängt ab von:

- dem Stützenmaterial $\rightarrow \lambda$
- der Stützengeometrie (Form, Größe)
- dem Stützenabstand δ
- dem Wärmekontaktwiderstand R_c zwischen Stütze und Glasscheibe

 ⇒ Optimierung anhand Messungen in Zweiplattenapparatur

Messungen in Zweiplattenapparatur

Bestimmung von $\Lambda_{stütz}$:

- Vakuumkammer evakuiert auf 10^{-5} hPa: $\Lambda_{gas} \rightarrow 0$ $\Rightarrow \Lambda_{stütz} \approx \Lambda_{mess} - \Lambda_{rad}$
- Externer Belastungsdruck: 1.10³ hPa

Strahlungseffekte

ZAE BAYERN

Positionierung von kugelförmigen Stützen mit Hilfe eines Fadengitters

Vergleichsmessungen zeigten:

Ergebnisse mit Gitter liegen generell tiefer als ohne Gitter (≈ 0.04 W/(m²K))

⇒ Seitlicher Strahlungsverlust ist nicht vernachlässigbar!

Temperaturabhängige Messungen

Für **Glaszylinder** mit Durchmesser = 1 mm und Höhe = 1 mm

Abstandsabhängige Messungen

für Edelstahlzylinder mit Durchmesser = 0,5mm und Höhe = 1mm

Je kleiner der Stützabstand, desto größer ist die Abweichung zwischen Simulation und Messung. Abstand 2 cm: **50** % Abweichung!

Grund:

Der Wärmekontaktwiderstand *R*_c zwischen Glasscheibe und Stütze ist **nicht vernachlässigbar**!

Übersicht über Messergebnisse

Zusammenfassung

Bilanz für thermisch optimiertes VIG:

Λ_{gas}	0,02 W/(m ² K)
$\Lambda_{stütz}$	0,30 W/(m ² K)
Λ_{rad}	0,17 W/(m ² K)
$\Lambda_{\rm VIG} = \Lambda_{\rm gas} + \Lambda_{\rm stütz} + \Lambda_{\rm rad}$	0,49 W/(m ² K)
U _{VIG}	0,45 W/(m ² K)

Ziel-U-Wert ist realistisch und praktisch umsetzbar!

Vielen Dank

Das Projekt Produktionstechniken für Vakuum-Isolier-Glas wird unterstützt vom

Bundesministerium für Wirtschaft und Technologie

Weitere Infos unter http://www.vig-info.de

Evakuierbare Zweiplattenapparatur

Messbedingungen:

- 1) Stationärer Zustand
- 2) Eindimensionaler (vertikaler) Wärmestrom

$$\Lambda = \frac{P_{el}}{2 \cdot A \cdot \Delta T}$$

Messbereich:

Temperatur:- 200 ℃ bis 400 ℃Gasdruck:10⁻⁵ bis 1000 hPaExt. Belastungsdruck:0 bis 4000 hPa

Modified Sample preparation

Test measurements with one glass pane

Messungen – Strahlungsaustausch

Messbedingung:

Voll evakuiert (10⁻⁵ hPa) $\rightarrow \Lambda_{gas}$ unterdrückt $\rightarrow \Lambda_{mess} = f(\epsilon_{schicht})$

Ergebnis:

ε_{Schicht} = **(6,6 ± 0,5) %**

Strahlungsaustausch im VIG:

 Λ_{rad} = (0,37 ± 0,03) W/m²K

(bei Raumtemperatur)

Aus Λ_{mess} kann $\epsilon_{Schicht}$ berechnet werden, wenn ϵ_{glas} und ϵ_{lola} bekannt sind:

- • ϵ_{lola} gemessen: 90 %
- • ϵ_{glas} (Literaturwert): 84 %

Modified Sample Preparation

ZAE BAYERN

Problems:

- Low and inhomogeneous thermal coupling between sample and apparatus
- High lateral heat flux

Results

Measured Λ_{spac} for different spacer systems at room temperature

Spacer distance δ [mm]

Einfluss der Stützen

Messergebnisse bei Raumtemperatur:

Conclusion

- The experimental investigation of different spacer systems proved the feasibility of stable VIG with $U_g < 0.5 \text{ W/(m^2K)}$

 \Rightarrow e.g. thin cylinders of stainless steel: $U_q = 0.44 \text{ W/(m^2K)}$

(with one low- ε -coating of $\varepsilon = 0.03$)

- The thermal contact resistance between spacers and glass panes significantly influences heat transfer through VIG
 - ⇒ The knowledge of R_c for the used cylinders is relevant for further simulations and the optimization of VIG